

57 Reunión Anual Sociedad Caribeña de Cultivos Alimenticios y el 10 congreso de la Sociedad Dominicana de Investigadores Agropecuarios y Forestales (SODIAF) "Una Sola Salud"

Capacidad supresora de cuatro especies de *Trichoderma* contra *Fusarium oxysporum* F. sp. cubense raza 1 en laboratorio

Socorro García Pantaleón, Luis Matos Casado, Pablo Suarez, Aura Paulino, Juan Carlos Torres

socorrogarciap@hotmail.com

Bávaro, Punta Cana, República Dominicana 15-19 de julio de 2024

INTRODUCCIÓN

- En República Dominicana el banano es de suma importancia por su contribución al crecimiento del Producto Interno Bruto (PBI) del sector agropecuario, mediante las exportaciones a mercados internacionales como:
- Estados Unidos y Europa.
- US\$104, 892,923 millones de dólares de 149,334 t exportada.

INTRODUCCIÓN

Las principales provincias de producción de banano son:

Internet: dominicanaonline.org

INTRODUCCIÓN

el banano es afectado por diferentes enfermedades entre las

que se encuentran:

Mancha foliar (Cordana)

Bacteriosis

OBJETIVO

Determinar la capacidad antagónica de especies endófitas nativas de *Trichoderma* spp. contra *Fusarium oxysporum* R1 *in vitro*.

Localización del experimento:

El experimento se realizó de agosto-septiembre del 2023 en el laboratorio de la Estación Experimental Mata Larga (IDIAF), San Francisco de Macorís.

Material biológico usado en el experimento:

Especies nativas del hongo endófito *Trichoderma* spp. utilizadas en el ensayo.

Especie	Cepa	Lugar de Procedencia					
T. harzianum	DB-5	Boca de Mao, Valverde					
T. cf harzianum	PJ-6	Sabana, Los Jiménez, Espaillat					
T. asperellum	VA-12	Las Uvas, Espaillat					
T. asperellum strain	MI-13	El Juncalito, Mao, Valverde					

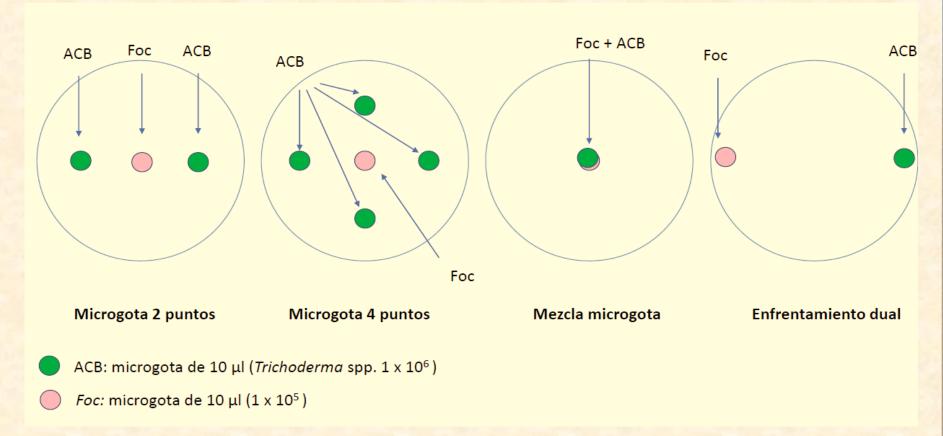
T. asperellum

Fusarium oxysporum raza 1 (FOCR1)

Método microgotas

Descripción de los tratamientos:

Tratamiento	Posición	Descripción						
TR	Testigo	FOC R1 cultivado en el centro del plato Petri.						
Trichoderma (DB-5, PJ-6, VA-12, MI-13)	1	El cultivo de FOC R1 en el centro del plato y a 1.5 cm el cultivo de las especies.						
Trichoderma (DB-5, PJ-6, VA-12, MI-13)	2	El cultivo de FOC R1 en el centro del plato y en cuatro puntos del plato las especies.						
Trichoderma (DB-5, PJ-6, VA-12, MI-13)	3	El cultivo de FOC R1 en el centro del plato y el cultivo de las especies sobre el patógeno.						
Trichoderma (DB-5, PJ-6, VA-12, MI-13)	4	El cultivo de FOC R1 en el centro del plato y el cultivo de las especies en extremos opuestos equidistantes, enfrentados en cultivo dual.						



Método de disco

Descripción de los tratamientos:

Tratamiento	Posición	Descripción						
TR	Testigo	FOC R1 cultivado en el centro del plato Petri.						
Trichoderma (DB-5, PJ-6, VA-12, MI-13)	1	El cultivo de <i>FOC</i> R1 en el centro del plato y a 1.5 cm el cultivo de las especies.						
Trichoderma (DB-5, PJ-6, VA-12, MI-13)	2	El cultivo de <i>FOC</i> R1 en el centro del plato y en cuatro puntos del plato las especies.						
Trichoderma (DB-5, PJ-6, VA-12, MI-13)	3	El cultivo de FOC R1 en el centro del plato y el cultivo de las especies sobre el patógeno.						
Trichoderma (DB-5, PJ-6, VA-12, MI-13)	4	El cultivo de FOC R1 en el centro del plato y el cultivo de las especies en extremos opuestos equidistantes, enfrentados en cultivo dual.						

Esquema de las posiciones de los tratamientos Fuente: Izquierdo *et al.* 2023

Imágenes de los métodos y posiciones de los tratamientos Fuente: Izquierdo *et al.* 2023

Diseño experimental

Completamente al azar (DCA) con arreglo factorial.

5 repeticiones.

Unidad experimental: un plato de Petri.

Instalación del ensayo:

Foc r1 inoc. en el centro

Inoc. Trichoderma cuatro puntos

Variable evaluada:

Porcentaje de inhibición del crecimiento diametral de Foc R1

.....Variable evaluada

Porcentaje de inhibición del patógeno (%)

$$PI = [(a-b)] a*100$$

donde:

PI= Porcentaje de inhibición del crecimiento diametral

a= crecimiento diametral de la colonia del patógeno control

b= crecimiento diametral de la colonia del patógeno expuesto al

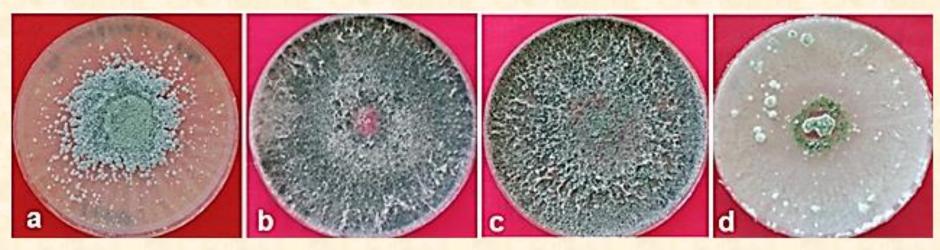
tratamiento del agente control.

(Singh et al., 2009)

Análisis Estadístico

Uso de Infostat® versión 2016, verificaron los supuestos de normalidad y homogeneidad de varianzas, y análisis de varianzas mediante la prueba no paramétrica de Kruskal-Wallis (P≤0.05).

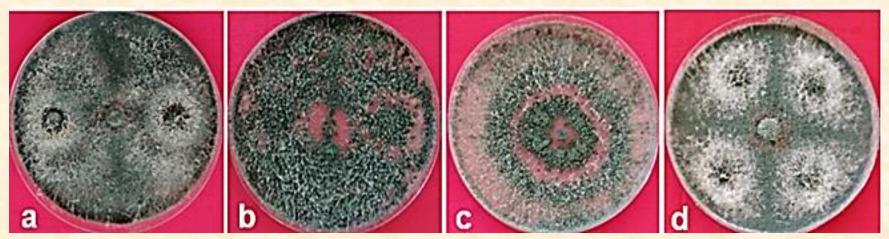
RESULTADOS


6.07

Porcentaje de inhibición del crecimiento diametral de FOC R1 con las cepas de Trichoderma spp.

Tretemiente	40011							opao a				•
Tratamiento	168H											
PJ-6-D-3	9.48	Α										
PJ-6-D-4	65.42	Α	В									
DB-5-D-3	50.56	Α	В									
PJ-6-MG-4	67.26	Α	В	С								
DB-5-D-4	67.30	Α	В	С	D							
DB-5-MG-4	69.20	Α	В	С	D							
VA-12-D-4	68.78	Α	В	С	D							
MI-13-D-4	69.02	Α	В	С	D	Ε						
MI-13-MG-4	69.92	Α	В	С	D	Е						
VA-12-MG-4	71.36	Α	В	С	D	Е	F					
VA-12-MG-2	78.68	Α	В	С	D	Е	F	G				
PJ-6-MG-2	80.38		В	С	D	Е	F	G	Н			
MI-13-MG-1	81.68		В	С	D	Е	F	G	Н	I		
DB-5-MG-2	82.38			С	D	E	F	G	Н	I	J	
DB-5-MG-1	82.60			С	D	E	F	G	Н	I	J	
DB-5-D-2	82.86				D	Ε	F	G	Н	I	J	
PJ-6-D-2	82.86				D	Ε	F	G	Н	I	J	
PJ-6-MG-1	82.62				D	Ε	F	G	Н	I	J	
DB-5-D-1	83.60					Ε	F	G	Н	I	J	
MI-13-MG-2	83.62					Ε	F	G	Н	I	J	
PJ-6-D-1	83.62						F	G	Н	I	J	K
VA-12-MG-1	85.12							G	Н	I	J	K
MI-13-D-2	86.96								Н	I	J	K
VA-12-D-3	90.54									I	J	K
VA-12-D-2	91.04									1	J	K
MI-13-D-3	91.04									I	J	K
VA-12-D-1	96.42										J	K
MI-13-D-1	97.16										J	K
DB-5-MG-3	100.00											K
VA-12-MG-3	100.00											K
MI-13-MG-3	100.00											K
P I-6-MG-3	100.00											K
Р	<0.0001											

RESULTADOS



Crecimiento de *Trichoderma* con mayor porcentaje de inhibición de FOC R1 en el método microgotas: a) *T. harzianum* (DB-5-MG-3), b) *T. asperellum* (VA-12-MG-3), c) *T. asperellum* strain (MI-13-MG-3), d) *T.* cf *harzianum* (PJ-6-MG-3)

RESULTADOS

Crecimiento de *Trichoderma* con mayor porcentaje de inhibición de FOC R1 en el método discos: a) *T. asperellum* (VA-12-D-1), b) *T. asperellum* strain (MI-13-D-1), c) *T. asperellum* strain (MI-13-D-3) d) *T. asperellum* (VA-12-D-2)

CONCLUSIONES Y RECOMENDACIÓN

- Las especies de *Trichoderma* fueron efectivas en la inhibición de *F. oxysporum* raza 1 (FOC R1) a nivel *in vitro*.
- El método de microgotas en la posición 3 presentó los mayores porcentajes de inhibición del crecimiento diametral de *F. oxysporum* raza 1.
- Se recomienda realizar experimentos de biocontrol con las especies en invernadero y campo.

AGRADECIMIENTOS

- A FONTAGRO por el financiamiento para la realización de esta investigación. Bajo el proyecto "Fortalecimiento de capacidades paral a prevención y el manejo de la marchitez por *Fusarium* de las Musáceas en América Latina y el Caribe".
- Al Director ejecutivo del IDIAF en Santo Domingo y al Departamento de planificación y desarrollo.
- Al Director y personal administrativo del Centro Norte del IDIAF.
- Al Encargado y personal administrativo de la Estación Experimental Mata Larga, San Francisco de Macorís.
- A los miembros del Comité Técnico del Centro Norte del IDIAF, por las revisiones realizadas.
- A Marisol Morel, Juan de Dios Moya, Nelsida Martínez y Altagracia Ureña por su colaboración prestada.

